
An NLP-based automated editorial aid 

ABSTRACT 

This article discusses ProWritingAid - an automated editorial 

aid, that improves English manuscript spelling, grammar and 

readability using machine learning, handcrafted rules, and n-gram 

models. It provides client applications and plugins for major 

operating systems and editing software. ProWritingAid generates a 

series of reports and actionable text correction suggestions aiming 

to improve writing for professional and academic writers, students, 

second language learners. 

1 INTRODUCTION 

Writing good text is both art and science. It should be concise, 

informative and easy to understand. In professional and scientific 

publishing this involves significant amount of editorial work. An 

editor directs the focus of the manuscript, cuts out nonessential text, 

verifies facts. He checks the correct usage of language – not just 

grammar, but also style and ease of perception. Automated editorial 

aid tools (ETs) can provide cost and time savings by simplifying 

editorial work and moving more of it to authors. Moreover, ETs are 

beneficial for students and language learners - over a billion people 

are using or learning English as a second or foreign language [1].  

Major problems ETs try to solve are (1) spelling, (2) grammar 

(e.g. punctuation, word agreement) correction [2,3] and (3) 

improving text readability. There are many difficulties in all of 

these tasks. For example, a naïve approach to spelling correction 

might look up each manuscript word in a dictionary and flag the 

unknown ones. However, there may be many candidate corrections 

for a given string. Consider the string ater. Without context, we can 

equally likely substitute it with after, later, alter, water. 

Furthermore, such dictionary is bound to lack neologisms and 

domain-specific terminology. Finally, correct spelling and usage of 

a word may depend on context. E.g. the phrase see you in five 

minuets could be correct or not, depending on whether the author 

uses minutes or dances to measure time. [4]  

English text readability has a long history of assessment. Some 

of the well-known metrics include Flesch-Kinkaid Score and the 

Dale-Chall Formula [5, 6]. However, these metrics are insufficient. 

While they can be used for recommending the user to reduce 

average syllable count, such suggestions are too broad and may be 

unsuitable for some kinds of text. Providing specific and actionable 

recommendations requires detecting clichés and inappropriate 

slang, pinpointing overly complex grammatical constructs among 

many other tasks. 

A considerable amount of research exists on the different 

aspects of text correction. Approaches progressed from simple 

dictionary lookups to contextual spelling techniques analyzing 

adjacent words when generating suggestions. Popular methods for 

correcting grammar errors include machine learning classifiers, n-

gram models, statistical machine translation models and usage of 

handcrafted rules [2]. Availability of publicly accessible datasets, 

such as Google N-gram corpus [7], served as a major enabler for 

using statistical and machine learning methods in this domain. 

In this paper, we introduce ProWritingAid [8] – an ET that 

addresses the following areas: 

1. Grammar and spelling error correction;

2. Readability improvement;

3. Cross-platform text editing via standalone applications

and integration with popular third-party software. 

By combining diverse NLP techniques into an integrated 

platform, ProWritingAid (PWA) is aiming to simplify work for 

writers, publishers, academics and English learners. 

2 System description 

2.1 Architecture 

Figure 1 shows the high-level PWA architecture. The core of 

PWA is the text analysis engine, including multiple modules, such 

as spelling correction.  
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Figure 1: High-level ProWritingAid architecture 

These modules are consumed by the backend service to provide 

a unified API for client applications. Finally, there are multiple 

client applications, including standalone clients and plugins for 

Google Chrome, Google Docs and Microsoft Word. The system 

also supports API access from third-party applications using 

HTTPS and JSON. 

Our text analysis engine is built using the principles of the 

Unstructured Information Management Architecture (Apache 

UIMA) [9]. The key concepts of this architecture are: 

1. Annotator – used to perfume a particular type of analysis

on the text, such as Part-of-Speech (POS) tagging; 

2. Annotation – The output of an annotator, such as a

particular POS tag on a certain token; 
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3. Common Analysis Structure (CAS) – allows sharing 

and representation of annotator results. 

Relations between these concepts are shown in Figure 2. 
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Figure 2: Key UIMA architectural concepts 

This architecture allows easy analysis customization and 

algorithm prototyping because of the modularity and 

composability. 

2.2 Text correction 

The general approach to text correction used by PWA is as 

follows: 

1. Generate the list of candidate corrections; 

2. Filter corrections using manually created anti-false 

positive (anti-FP) patterns; 

3. Confirm the likelihood of candidate corrections with the 

Google N-gram model [7], looking at the surrounding context. 

We use a mixture of handcrafted rules and machine learning to 

generate candidate corrections. Where training data is available or 

can be easily created, machine learning is preferred. However, 

assembling a reliable learning corpus may sometimes be too 

laborious. Often manual rules are much faster to create and perform 

extremely well. Notably, a similar approach was used by winners 

of the CoNLL-2014 shared task [10]. 

When applying machine learning, we train individual models 

for specific error types (such as subject-verb agreement) using 

Conditional Random Fields (CRFs), Support Vector Machines 

(SVMs), confusion sets and other techniques. 

For readability improvement, we rely on a set of manually 

created rules, heuristics and dictionaries to highlight clichés, 

overuse of glue words, inconsistent punctuation, excessive word 

repetition, and other issues. The concept of readability is domain-

specific. For instance, colloquialisms like raining cats and dogs are 

acceptable in a novel, but not in a maths article. Therefore, we adapt 

rule sets to the user-defined writing style. 

2.3 Reporting analysis results 

Our web and desktop applications provide the user with a 

summary report and highlight individual issues in the text.  

Figure 3: Fragment of analysis overview report 

The summary report contains key readability metrics, top 

suggestions and result comparison to other PWA users. Apart from 

actionable recommendations, this provides users with a learning 

opportunity, because many suggestions contain guidance on correct 

word usage. 

3 CONCLUSIONS 

In this paper, we presented ProWritingAid - an ET that 

improves spelling, grammar and readability using machine 

learning, handcrafted rules, and n-gram models. PWA provides a 

standalone and a web editor, plugins for popular editing software, 

and an API for third parties. It presents text analysis results as a 

series of reports and text annotations. By including guidance on 

correct word construct usage into the generated annotations, PWA 

aims to provide the users with a learning opportunity. 

An interesting direction for future research is exploring more 

general approaches to text correction using such deep learning 

techniques as Long Short-Term Memory (LSTM) neural networks. 
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